gather$31100$ - vertaling naar grieks
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

gather$31100$ - vertaling naar grieks

Scatter/Gather I/O; Scatter gather; Scatter-gather; Scatter/gather; Scatter/gather I/O; Scatter-gather I/O

gather      
v. συνάγω, συναθροίζω, συναθροίζομαι, μαζεύω, συλλέγω

Definitie

Gathered
·Impf & ·p.p. of Gather.

Wikipedia

Vectored I/O

In computing, vectored I/O, also known as scatter/gather I/O, is a method of input and output by which a single procedure call sequentially reads data from multiple buffers and writes it to a single data stream, or reads data from a data stream and writes it to multiple buffers, as defined in a vector of buffers. Scatter/gather refers to the process of gathering data from, or scattering data into, the given set of buffers. Vectored I/O can operate synchronously or asynchronously. The main reasons for using vectored I/O are efficiency and convenience.

Vectored I/O has several potential uses:

  • Atomicity: if the particular vectored I/O implementation supports atomicity, a process can write into or read from a set of buffers to or from a file without risk that another thread or process might perform I/O on the same file between the first process' reads or writes, thereby corrupting the file or compromising the integrity of the input
  • Concatenating output: an application that wants to write non-sequentially placed data in memory can do so in one vectored I/O operation. For example, writing a fixed-size header and its associated payload data that are placed non-sequentially in memory can be done by a single vectored I/O operation without first concatenating the header and the payload to another buffer
  • Efficiency: one vectored I/O read or write can replace many ordinary reads or writes, and thus save on the overhead involved in syscalls
  • Splitting input: when reading data held in a format that defines a fixed-size header, one can use a vector of buffers in which the first buffer is the size of that header; and the second buffer will contain the data associated with the header

Standards bodies document the applicable functions readv and writev in POSIX 1003.1-2001 and the Single UNIX Specification version 2. The Windows API has analogous functions ReadFileScatter and WriteFileGather; however, unlike the POSIX functions, they require the alignment of each buffer on a memory page. Winsock provides separate WSASend and WSARecv functions without this requirement.

While working directly with a vector of buffers can be significantly harder than working with a single buffer, using higher-level APIs for working efficiently can mitigate the difficulties.